Theoretical study on the mechanism of cycloaddition reaction between silylene silylene($\mathrm{H}_{2} \mathbf{S i}=\mathrm{Si}$:) and acetaldehyde

Xiuhui Lu • Leyi Shi • Hua Ji

Received: 8 November 2011 / Accepted: 23 May 2012 /Published online: 15 June 2012
(C) Springer-Verlag 2012

Abstract

The mechanism of the cycloaddition reaction between singlet silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde has been investigated with $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2 / 6-31 \mathrm{G}^{*}$ and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2 / 6-31 \mathrm{G}^{* *}$ method, from the potential energy profile, we could predict that the reaction has three competitive dominant reaction pathways. The present rule of this reaction is that the $3 p$ unoccupied orbital of the Si : atom in silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$) inserts on the π orbital of acetaldehyde from oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further leads to the generation of a four-membered ring silylene (the $\mathrm{H}_{2} \mathrm{Si}-\mathrm{O}$ in the opposite position). In addition, the [2+2] cycloaddition reaction of the two π-bonds in silylene silylene and acetaldehyde generates another four-membered ring silylene (the $\mathrm{H}_{2} \mathrm{Si}-\mathrm{O}$ in the syn-position). Because of the unsaturated property of Si : atom in the two four-membered ring silylenes, they could further react with acetaldehyde, resulting in the generation of two spiro-heterocyclic ring compounds with Si . Simultaneously, the ring strain of the four-membered ring silylene (the $\mathrm{H}_{2} \mathrm{Si}-\mathrm{O}$ in the syn-position) makes it isomerize to a twisted four-membered ring product.

[^0]Keywords Cycloaddition reaction • Potential energy profile \cdot Silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:)

Introduction

Unsaturated silylene is a kind of important intermediate. The simplest unsaturated silylene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{Si}$: was first observed experimentally by Leclerq and Dubois in 1979 [1]. Srinivas et al. [2] have used neutralization-reionization mass spectrometry to show that $\mathrm{H}_{2} \mathrm{C}=\mathrm{Si}$: is a viable molecule in the low-pressure gas phase. According to theoretical study, the ground state of $\mathrm{H}_{2} \mathrm{C}=\mathrm{Si}$: is singlet state. The energy of $\mathrm{H}_{2} \mathrm{C}=\mathrm{Si}$: is $84 \mathrm{kcal} \mathrm{mol}^{-1}$ lower than silaacetylide. So $\mathrm{H}_{2} \mathrm{C}=\mathrm{Si}$: is the one isomer of the lowest energy [3]. We have studied the unsaturated silylenes cycloaddition reaction preliminarily [4-8], but these studies are always limited to the cycloaddition reaction of silylidene and its derivatives $\left[\mathrm{R}_{1}, \mathrm{R}_{2} \mathrm{C}=\mathrm{Si}:\left(\mathrm{R}_{1}, \mathrm{R}_{2}=\right.\right.$ $\mathrm{H}, \mathrm{Me}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{Ph}, \mathrm{Ar}$.$)]. There are no reports on$ the cycloaddition reaction of silylene silylene and its derivatives $\left[\mathrm{R}_{1}, \mathrm{R}_{2} \mathrm{Si}=\mathrm{Si}:\left(\mathrm{R}_{1}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{Me}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}\right.\right.$, $\mathrm{Ph}, \mathrm{Ar} . . .$. .)] till now, so it is a new field of study for unsaturated silylene cycloaddition reaction. In order to explore the rules of cycloaddition reactions between silylene silylene (include its derivatives) and the asymmetric π-bonded compound, silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde were selected as model molecules, and its mechanism (considering the hydrogen transfer and methyl transfer simultaneously) was investigated and analyzed
theoretically. The results show that cycloaddition reaction consists of five possible pathways, as follows:

Calculation methods

MP2/6-31G* and MP2/6-31G** [9] implemented in the Gaussian 98 package [10] is employed to locate all the stationary points along the reaction pathways. Full optimization and vibrational analysis are done for the stationary points on the reaction profile. Zero point energy and $\operatorname{CCSD}(\mathrm{T})$ single point calculation corrections $\left[\mathrm{CCSD}(\mathrm{T}) / / \mathrm{MP} 2 / 6-31 \mathrm{G}^{*}\right.$ and CCSD (T)//MP2/6-31G**] are included for the energy calculations. In order to explicitly establish the relevant species, the intrinsic reaction coordinate (IRC) $[11,12]$ is also calculated for all the transition states appearing on the cycloaddition energy profile.

Results and discussion

Theoretical calculations indicate that the geometric parameters, which appear in the cycloaddition reactions (1)-(5)
between silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde, are almost the same at the MP2/6-31G* and MP2/6-31G** levels, so are the mechanisms of cycloaddition reaction between silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde with both MP2/ 6-31G* and MP2/6-31G** methods. Considering the accuracy of $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2 / 6-31 \mathrm{G}^{* *}$ method in energy calculation, the following discussions therefore are based on the results from MP2/6-31G** and $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2 / 6-31 \mathrm{G}^{* *}$ with respect to geometric parameters and energy, respectively.

Reaction (1): channel of forming the three-membered ring product (P1)

The geometrical parameters of silylene silylene (R1), acetaldehyde (R2), intermediate (INT1), transition state (TS1) and product (P 1) appearing in reaction (1) between silylene silylene and acetaldehyde are given in Fig. 1. The energies are listed in Table 1, and the potential energy profile for the

INT1

TS1

P1

Fig. 1 Optimized MP2/6-31G** geometrical parameters and the atornic numbering for the species in cycloaddition reaction(1). Bond lengths and bond angles are in angstrom and degree, respectively
cycloaddition reaction is shown in Fig. 2. The unique imaginary frequency of the transition state (TS1) is 210.6 i , consequently, the transition state can be affirmed as the real one. According to the calculations of the IRC of TS1 and further optimization for the primary IRC results, TS1 connects INT1 with P1.

According to Fig. 2, it can be seen that reaction (1) consists of two steps: the first one is that the two reactants (R1, R2) first form an intermediate (INT1), which is a barrier-free exothermic reaction of $90.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; in the second step, intermediate (INT1) is isomerized to a three-membered ring product (P1) through the transition state (TS1) with an energy barrier of $75.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Reaction (2): channels of forming four-membered ring silylene (P2), hydrogen transfer products (P2.1, P2.2) and methyl transfer product (P 2.3)

The geometrical parameters of intermediate (INT2), transition states (TS2, TS2.1, TS2.2, TS2.3) and products (P2, P2.1, P2.2, P2.3) appearing in reaction(2) between silylene silylene and acetaldehyde are given in Fig. 3. The energies are listed in Table 1, and the potential energy profile for the cycloaddition reaction is shown in Fig. 2. The unique imaginary frequencies of the transition states TS2, TS2.1, TS2.2 and TS2.3 are $265.2 \mathrm{i}, 636.4 \mathrm{i}, 855.3 \mathrm{i}$ and 514.6 i , respectively, consequently, these transition states can be affirmed as the real ones. According to the calculations of the IRC of TS2, TS2.1, TS2.2 and further optimization for the primary IRC results: TS2 connects INT2 with P2. TS2.1 connects P2 with P2.1. TS2.2 connects P2 with P2.2. TS2.3 connects P2 with P2.3.

According to Fig. 2, it can be seen that reaction (2) consists of five steps: the first step is that the two reactants (R1, R2) form an intermediate (INT2), which is a barrier-free exothermic reaction of $91.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; the second step is that the intermediate (INT2) isomerizes to a four-membered ring silylene (P2) via transition state (TS2) with an energy barrier of $13.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; in the third, fourth and fifth step, P 2 undergoes $\mathrm{Si}-\mathrm{Si}$ and $\mathrm{C}-\mathrm{Si}(2)$ hydrogen transfer and $\mathrm{C}-\mathrm{Si}(2)$ methyl
transfer, via transition states TS2.1, TS2.2 and TS2.3 with energy barriers of $149.0,128.0$ and $204.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively, resulting in the formation of products (P2.1, P2.2 and P 2.3). Because the energy of $\mathrm{P} 2.1, \mathrm{P} 2.2$ and P 2.3 is 67.0 , 82.0 and $85.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher than the energy of P 2 , so the reactions of $\mathrm{P} 2 \rightarrow \mathrm{P} 2.1, \mathrm{P} 2 \rightarrow \mathrm{P} 2.2$ and $\mathrm{P} 2 \rightarrow \mathrm{P} 2.3$ is prohibited in thermodynamics, and reaction (2) will be end with product P2. According to the comparison of reaction (2) with reaction (1), the energy of TS 1 is $61.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher than that of TS2, so reaction (2) is the dominant channel.

Reaction (3): channel of forming a spiro-heterocyclic ring compound with Si (P3)

In reaction (3), the four-membered ring silylene (P2) further reacts with acetaldehyde to form a spiro-heterocyclic ring compound with $\mathrm{Si}(\mathrm{P} 3)$. The geometrical parameters of intermediate (INT3), transition state (TS3) and product (P3) appearing in reaction (3) are given in Fig. 4. The energies are listed in Table 1, and the potential energy profile for the cycloaddition reaction is shown in Fig. 2. The unique imaginary frequency of the transition state (TS3) is 354.1 i , consequently, the transition state can be affirmed as the real one. According to the calculation of the IRC of TS3 and further optimization for the primary IRC results, TS3 connects INT3 with P3.

According to Fig. 2, it can be seen that processes of reaction (3) are as follows: on the basis of P 2 formed from reaction (2), P2 further reacts with acetaldehyde to form an intermediate (INT3), which is a barrier-free exothermic reaction of $41.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; and then, the intermediate (INT3) is isomerized to a spiro-heterocyclic ring compound with $\mathrm{Si}(\mathrm{P} 3)$ via a transition state (TS3) with an energy barrier of $121.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Reaction (4): the channels of forming four-membered ring silylene (INT4) and its isomer(P4), H-transfer products (P4.1and P4.2) and Me-transfer product (P4.3)

The geometrical parameters of the four-membered ring silylene (INT4), transition states (TS4, TS4.1, TS4. 2.1,TS4.2.2,

Table 1 Total energies $\left(E_{\mathrm{T}} /\right.$ hartree $)$ and relative energies $\left(E_{\mathrm{R}} / \mathrm{kJ} \mathrm{mol}^{-1}\right)$ for the species from various theoretical methods

Reaction	Species	MP2/6-31G*		$\begin{aligned} & \operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2 / \\ & 6-31 \mathrm{G}^{*} \end{aligned}$		MP2/6-31G**		$\begin{aligned} & \operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP2} 2 \\ & 6-31 \mathrm{G}^{* *} \end{aligned}$	
		${ }^{\text {a }} E_{\mathrm{T}}$	E_{R}	${ }^{\text {a }} E_{\mathrm{T}}$	$E_{\text {R }}$	${ }^{\text {a }} E_{\mathrm{T}}$	E_{R}	${ }^{\text {a }} E_{\mathrm{T}}$	E_{R}
${ }^{\text {b Reaction(1) }}$	R1+R2	-732.11039	0.0	-732.24953	0.0	-732.15668	0.0	-732.42938	0.0
	INT1	-732.33527	-590.0	-732.41519	-435.0	-732.38184	-591.0	-732.46365	-90.0
	TS1(INT1-P1)	-732.29889	-495.0	-732.38658	-360.0	-732.34587	-496.0	-732.43525	-15.0
	P1	-732.35519	-643.0	-732.43006	-474.0	-732.40285	-646.0	-732.47938	-131.0
${ }^{\text {b }}$ Reaction(2)	R1+R2	-732.11039	0.0	-732.24953	0.0	-732.15688	0.0	-732.42938	0.0
	INT2	-732.33591	-592.0	-732.41547	-436.0	-732.38269	-593.0	-732.46407	-91.0
	TS2(INT2-P2)	-732.33175	-581.0	-732.40988	-421.0	-732.37895	-583.0	-732.45899	-78.0
	P2	-732.39624	-751.0	-732.47058	-580.0	-732.44423	-754.0	-732.52047	-239.0
	TS2.1 (P2-P2.1)	-732.3361	-593.0	-732.41426	-433.0	-732.38451	-598.0	-732.46386	-91.0
	P2.1	-732.3714	-685.0	-732.44529	-514.0	-732.41941	-689.0	-732.49499	-172.0
	TS2.2 (P2-P2. 2)	-732.34836	-625.0	-732.42049	-449.0	-732.39824	-634.0	-732.47174	-111.0
	P2. 2	-732.37075	-684.0	-732.44028	-501.0	-732.41843	-687.0	-732.48983	-158.0
	TS2. 3 (P2-P2.3)	-732.3197	-550.0	-732.39189	-374.0	-732.36820	-555.0	-732.4428	-35.0
	P2.3	-732.36984	-681.0	-732.43815	-495.0	-732.41802	-686.0	-732.48820	-154.0
${ }^{\text {c Reaction(3) }}$	P2+R2	-885.6862	0.0	-885.79901	0.0	-885.76558	0.0	-885.88188	0.0
	INT3	-885.70371	-46.0	-885.81442	-41.0	-885.78333	-47.0	-885.89752	-41.0
	TS3(INT3-P3)	-885.6549	82.0	-885.76875	79.0	-885.73468	81.0	-885.85155	80.0
	P3	-885.74233	-147.0	-885.84503	-121.0	-885.82218	-149.0	-885.92836	-122.0
${ }^{\mathrm{b}}$ Reaction(4)	R1+R2	-732.11039	0.0	-732.24953	0.0	-732.15688	0.0	-732.42938	0.0
	INT4	-732.37386	-692.0	-732.44767	-520.0	-732.42209	-696.0	-732.49804	-180.0
	TS4(INT4-P4)	-732.37124	-685.0	-732.4453	-514.0	-732.41947	-689.0	-732.49577	-174.0
	P4	-732.38253	-715.0	-732.45383	-536.0	-732.43076	-719.0	-732.58323	-404.0
	TS4.1 (INT4-P4.1)	-732.36593	-671.0	-732.44007	-500.0	-732.41541	-679.0	-732.49109	-162.0
	P4.1	-732.38642	-725.0	-732.45826	-548.0	-732.43380	-727.0	-732.50769	-206.0
	TS4.2.1 (INT4-P4.2.1)	-732.3675	-675.0	-732.44078	-502.0	-732.41615	-681.0	-732.49124	-162.0
	P4.2.1	-732.37361	-691.0	-732.44556	-515.0	-732.42404	-701.0	-732.49769	-179.0
	TS4.2.2 (P4.2.1-P4.2)	-732.36894	-679.0	-732.44201	-505.0	-732.41759	-685.0	-732.49218	-165.0
	P4.2	-732.3714	-685.0	-732.44529	-514.0	-732.41941	-689.0	-732.49499	-172.0
	TS4.3 (INT4-P4.3)	-732.34566	-618.0	-732.41811	-443.0	-732.39410	-623.0	-732.46849	-103.0
	P4.3	-732.38282	-715.0	-732.45383	-536.0	-732.43114	-720.0	-732.50423	-197.0
${ }^{\text {d Reaction(5) }}$	INT4+R2	-885.66383	0.0	-885.7761	0.0	-885.74344	0.0	-885.85945	0.0
	INT5	-885.68081	-45.0	-885.78752	-30.0	-885.76067	-45.0	-885.87083	-30.0
	TS5(INT5-P5)	-885.65433	25.0	-885.76667	25.0	-885.73445	24.0	-885.85005	25.0
	P5	-885.73343	-183.0	-885.83592	-157.0	-885.81350	-184.0	-885.91973	-158.0

${ }^{\mathrm{a}} E_{\mathrm{T}}=E($ Species $)+$ zero point energy, $\mathrm{b}: E_{\mathrm{R}}=E_{\mathrm{T}}-E_{(\mathrm{R} 1+\mathrm{R} 2)}$, c: $E_{\mathrm{R}}=E_{\mathrm{T}}-E_{(\mathrm{P} 2+\mathrm{R} 2)}, \mathrm{d}: E_{\mathrm{R}}=E_{\mathrm{T}}-E_{(\mathrm{INT} 4+\mathrm{R} 2)}$

Fig. 2 The potential energy profile for the cycloaddition reactions between $\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}$: and acetaldehyde with CCSD (T)// MP2/6-31G**

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)=58.4$
INT2

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)=52.1$
TS2

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)=-0.3$

P2

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)=46.7$
TS2.2

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)=36.7$ P2. 2

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)=44.7$
TS2. 3

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)=35.9$
P2.3

Fig. 3 Optimized MP2/6-31G** geometrical parameters of INT2, TS2, TS2.1,TS2.2, TS2.3, P2, P2.1, P2.2, P2.3 and the atomic numbering for the species in cycloaddition reaction (2). Bond lengths and bond angles are in angstrom and degree, respectively

TS4.3) and products (P4, P4.1, P4.2.1, P4.2, P4.3) appearing in reaction (4) between silylene silylene and acetaldehyde are given in Fig. 5. The energies are listed in Table 1, and the potential energy profile for the cycloaddition reaction is shown in Fig. 2. The unique imaginary frequencies of the transition states TS4, TS4.1, TS4.2.1, TS4.2.2 and TS4.3 are $186.5 \mathrm{i}, 706.5 \mathrm{i}, 406.3 \mathrm{i}, 256.4 \mathrm{i}$ and 324.8 i respectively, consequently, these transition states can be affirmed as the real ones. According to the calculations of the IRC of TS4, TS4.1, TS4.2.1, TS4.2.2 and TS4.2 and further optimization for the primary IRC results: TS4 connects INT4 with P4. TS4.1 connects INT4 with P4.1. TS4.2.1 connects INT4 with P4.2.1. TS4.2.2 connects P4.2.1 with P4.2. TS4.3 connects INT4 with P4.3.

According to Fig. 2, it can be seen that reaction (4) consists of five steps: in the first step, the two reactants form
a four-membered ring silylene (INT4), which is a barrierfree exothermic reaction of $180.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; in the second step, the INT4 is isomerized to a distorted four-membered ring product (P 4) through transition state (TS4) with energy barrier of $6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; in the third step, INT4 undergoes C$\mathrm{Si}(2)$ hydrogen transfer via transition state (TS4.1) with energy barrier of $18.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, resulting in the formation of product (P 4.1); in the fourth step, INT4 undergoes $\mathrm{Si}-\mathrm{Si}$ hydrogen transfer via transition state (TS4.2.1) with energy barrier of $18.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, resulting in the formation of product (P4.2.1); and then, P4.2.1 undergoes $\mathrm{Si}-\mathrm{Si}$ hydrogen transfer via transition state (TS4.2.2) with energy barrier of $14.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, resulting in the formation of product (P 4.2). In the fifth step, INT4 undergoes $\mathrm{C}-\mathrm{Si}(2)$ methyl transfer via transition state (TS4.3) with energy barrier of $78.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, resulting in the formation of product (P 4.3). Because the

Fig. 4 Optimized MP2/6$31 \mathrm{G}^{* *}$ geometrical parameters of INT3, TS3, P3 and the atomic numbering for the species in cycloaddition reaction (3). Bond lengths and bond angles are in angstrom and degree, respectively

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=3.9$
$\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=-112.0$ $\angle \mathrm{C}(3) \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1)=-57.2$ TS3

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=0.0$
$\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=-137.0$
$\angle \mathrm{C}(3) \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1)=-113.8$
P 3
P3

Fig. 5 Optimized MP2/6-31G** geometrical parameters of INT4, TS4, P4, TS4.1, P4.1, TS4.2.1, P4.2.1, TS4.2.2, P4.2, TS4.3, P4.3 and the atomic numbering for the species in cycloaddition reaction (4). Bond lengths and bond angles are in angstrom and degree, respectively
energy of P4.2.1 is $1.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher than INT4, INT4 $\rightarrow \mathrm{P} 4.2$ is prohibited in thermodynamics at normal temperature and pressure. Because the energy of TS4 is 12.0 and $72.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower than TS4.1 and TS4.3, $\mathrm{INT} 4 \rightarrow \mathrm{P} 4$ is a dominant reaction pathway of reaction(4). According to the comparison of reaction (3) with reaction (4), there is only an energy barrier difference of $7.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ between TS2 and TS4, so reaction (3) and INT4 $\rightarrow \mathrm{P} 4$ in reaction (4) are the two competitive dominant channels.

Reaction (5): channel of forming a spiro-heterocyclic ring compound with Si (P5)

In reaction (5), the four-membered ring intermediate (INT4) further reacts with acetaldehyde (R2) to form a spiro-heterocyclic ring compound with Si (P5). The geometrical parameters of intermediate (INT5), transition state (TS5) and product (P5) appearing in reaction (5) are given in Fig. 6. The energies are listed in Table 1,

Fig. 6 Optimized MP2/6$31 \mathrm{G}^{* *}$ geometrical parameters of INT5, TS5, P5 and the atomic numbering for the species in cycloaddition reaction (5). Bond lengths and bond angles are in angstrom and degree, respectively

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=156.2$ $\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=71.8$ $\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)-71.8$
$\angle \mathrm{C}(3) \mathrm{O}(2) \mathrm{Si}(2) \mathrm{C}(1)=-56.8$ INT5

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=169.3$
$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=169.3$
$\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=76.8$ $\angle \mathrm{C}(3) \mathrm{O}(2) \mathrm{Si}(2) \mathrm{C}(1)=-72.5$ TS5

$\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=166.7$ $\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)=62.7$ $\angle \mathrm{C}(3) \mathrm{O}(2) \mathrm{Si}(2) \mathrm{C}(1)=-119.4$

P5
and the potential energy profile for the cycloaddition reaction is shown in Fig. 2. The unique imaginary frequency of the transition state (TS5) is 308.5 i , consequently, the transition state (TS5) can be affirmed as the real one. According to the calculations of the IRC of TS5 and further optimization for the primary IRC results, TS5 connects INT5 with P5.

According to Fig. 2, it can be seen that the process of reaction (5) is as follows: on the basis of the two reactants (R1, R2) to form a four-membered ring silylene (INT4), INT4 further reacts with acetaldehyde (R2) to form an intermediate (INT5), which is a barrier-free exothermic reaction of $30.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. And then intermediate (INT5) isomerizes to a spiro-heterocyclic ring compound with Si (P5) via a transition state (TS5) with an energy barrier of $55.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Comparing reaction (5) with reaction (4), it is realized that the two reactions compete mutually due to scrambling for INT4 together. In reaction (5), INT4 $+\mathrm{R} 2 \rightarrow \mathrm{INT} 5$ can reduce the energy of $30.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. In reaction (4), the energy barrier of INT4 $\rightarrow \mathrm{P} 4$ is only $6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Therefore, reaction (5) and reaction (4) are two competitive dominant reaction channels.

Theoretical analysis and explanation of the dominant reaction channels

According to the above analysis, there are three competitive dominant reaction channels of the cycloaddition reaction between singlet state silylene silylene and acetaldehyde as follows:

$$
\begin{array}{ll}
R 1+R 2 \rightarrow I N T 2 \xrightarrow{\text { TS3 }} P 2 \xrightarrow{+k 2} I N T 3 \xrightarrow{T 33} P P & \text { Reaction(3) } \\
R 1+R 2 \rightarrow I N T 4 \xrightarrow{T s 4} P 4 & \text { Reaction(4) } \\
R 1+R 2 \rightarrow I N T 4 \xrightarrow{+k 2} I N T 5 \xrightarrow{\rightarrow T s 5} P 5 & \text { Reaction(5) }
\end{array}
$$

The mechanism of reaction (3) can be explained with the frontier molecular orbital diagram (Figs. 7 and 8) and Figs. 1,

Fig. 7 A schematic interaction diagram for the frontier orbitals of $\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}:(\mathrm{R} 1)$ and $\mathrm{MeHC}=\mathrm{O}(\mathrm{R} 2)$

Fig. 8 A schematic interaction diagram for the frontier orbitals of P2 and $\mathrm{MeHC}=\mathrm{O}(\mathrm{R} 2)$

3 and 4. According to Figs. 1, 3 and 7, because the carbonyl of aldehyde is a polar group, the electron clouds of the π-bond gather around the side of oxygen, when the silylene silylene interacts with acetaldehyde, so the 3 p unoccupied orbital of the $\operatorname{Si}(2)$ atom in silylene silylene will insert the π orbital of acetaldehyde from oxygen side. Then the shift of π-electrons to the p unoccupied orbital gives a $\pi \rightarrow \mathrm{p}$ donor-acceptor bond, leading to the formation of intermediate INT2. As the reaction goes on, due to the $\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{OC}(1)\left(\right.$ INT2: 58.4°, TS2: $\left.52.1^{\circ}, \mathrm{P} 2:-0.3^{\circ}\right)$ decreases gradually, $\angle \mathrm{Si}(1) \mathrm{Si}(2) \mathrm{O}$ (INT2: 87.6°, TS2: $83.4^{\circ}, \mathrm{P} 2: 76.1^{\circ}$) decreases gradually, the length of $\mathrm{Si}(2)-\mathrm{O}$ bond (INT2: $2.037 \AA, \mathrm{TS} 2: 1.919 \AA, \mathrm{P} 2$: $1.686 \AA$) shortens gradually, length of $\operatorname{Si}(1)-\operatorname{Si}(2)$ bond (INT2: $2.216 \AA, \mathrm{TS} 2: 2.248 \AA, \mathrm{P} 2: 2.426 \AA$) and the bond of C(1)-O(INT2: $1.244 \AA$,TS2: $1.275 \AA, \mathrm{P} 2: 1.481 \AA$) elongates gradually. And finally intermediate (INT2) transforms to a more stable four-membered ring silylene $(\mathrm{P} 2)$ via the transition state (TS2). Because P2 is still an active product, P2 may further react with acetaldehyde to form spiro-heterocyclic ring

Fig. 9 A schematic interaction diagram for the frontier orbitals of INT4 and $\mathrm{MeHC}=\mathrm{O}(\mathrm{R} 2)$
compound with $\mathrm{Si}(\mathrm{P} 3)$. The mechanism of this reaction can be explained with Figs. 4 and 8. According to the rule of molecular orbital symmetry adaptation, when P2 interacts with acetaldehyde (R2), the 3p unoccupied orbital on $\operatorname{Si}(2)$ atom of P 2 will insert on the π orbital of acetaldehyde from the oxygen side. Then the shift of π-electrons to the p unoccupied orbital gives a $\pi \rightarrow \mathrm{p}$ donor-acceptor bond, leading to the formation of intermediate INT3. As the reaction goes on, due to $\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1)\left(\mathrm{INT} 3: 94.9^{\circ}\right.$, TS3: $118.2^{\circ}, \mathrm{P} 3$: 122.9°) and $\angle \mathrm{O}(2) \mathrm{Si}(2) \mathrm{O}(1) \mathrm{C}(1)$ (INT3: -72.4°, TS3: $112.0^{\circ}, \mathrm{P} 3:-137.0^{\circ}$) increases gradually, $\angle \mathrm{C}(3) \mathrm{O}(2) \mathrm{Si}(2)$ (INT3: $130.9^{\circ}, \mathrm{TS} 3: 102.8^{\circ}, \mathrm{P} 3: 69.1^{\circ}$) descreases gradually, the length of $\mathrm{C}(3)-\mathrm{O}(2)$ (INT3: $1.238 \AA, \mathrm{TS} 3: 1.430 \AA, \mathrm{P} 3$: $1.534 \AA$) elongates gradually. Finally the $\operatorname{Si}(2)$ atom in INT3 hybridizes to sp^{3} hybrid orbital after the transition state TS3, forming the more stable spiro-heterocyclic ring compound with $\mathrm{Si}(\mathrm{P} 3)$.

The mechanism of reaction (4) and reaction (5) can be explained with the molecular orbital diagram (see Fig. 9 and Figs. 5 and 6). According to Fig. 5, as silylene silylene (R1) initially interacts with acetaldehyde (R2), the [2+2] cycloaddition of the bonding π-orbitals first results in a four-membered ring silylene (INT4). Because of the four-membered ring silylene (INT4) has a larger tensility, so INT4 is at a higher energy state, under the energy driven, the INT4 is isomerized into a distorted four-membered ring product (P 4) via transition state (TS4). Otherwise, $\mathrm{Si}(2)$ atom in INT4 is unsaturated. So, INT4 further reacts with acetaldehyde to form a spiro-heterocyclic ring compound with Si (P5). The mechanism of reaction can be explained with Figs. 6 and 9. When INT4 interacts with acetaldehyde (R2), the 3 p unoccupied orbital of the $\mathrm{Si}(2)$ atom in INT4 will insert on the π orbital of acetaldehyde from the oxygen side. Then the shift of π-electrons to the p unoccupied orbital gives a $\pi \rightarrow \mathrm{p}$ donor-acceptor bond, leading to the formation of intermediate INT5. As the reaction goes on, due to $\angle \mathrm{C}(3) \mathrm{O}(2) \mathrm{Si}(2)\left(\right.$ INT5: 133.2°, TS5: 104.9°, $\mathrm{P} 5: 69.8^{\circ}$) decreases gradually and the length of $\mathrm{C}(3)-\mathrm{O}(2)$ bond (INT5: $1.367 \AA$, TS5: $1.419 \AA, \mathrm{P} 5: 1.505 \AA$) elongates gradually. Finally the $\mathrm{Si}(2)$ atom in INT5 hybridizes to sp^{3} hybrid orbital after the transition state TS5, forming the more stable spiroheterocyclic ring compound with Si (P5).

Comparing the dominant reaction channels of the cycloaddition reaction between silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde with the cycloaddition reaction between germylene silylene $\left(\mathrm{H}_{2} \mathrm{Ge}=\mathrm{Si}\right.$:) and acetone [13], the cycloaddition reaction between silylidene $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{Si}\right.$:) and formaldehyde [5], the result indicated that the mechanism of cycloaddition reaction between germylene silylene $\left(\mathrm{H}_{2} \mathrm{Ge}=\mathrm{Si}\right.$:) and acetone is similar to that of cycloaddition reaction between silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$) and acetaldehyde, and there are three dominant reaction channels similar to that of cycloaddition reaction between silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde. The cycloaddition reaction between silylidene $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{Si}\right.$:) and
formaldehyde has only one dominant reaction channel, the mechanism of the reaction channel is similar to that of the cycloaddition reaction(3) between silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde. The cycloaddition reactions (4) and (5) between silylene silylene $\left(\mathrm{H}_{2} \mathrm{Si}=\mathrm{Si}\right.$:) and acetaldehyde are not the dominant reaction channels for the cycloaddition reaction between silylidene ($\mathrm{H} 2 \mathrm{C}=\mathrm{Si}$:) and formaldehyde.

Conclusions

On the basis of the potential energy profile the cycloaddition reaction between singlet silylene silylene and acetaldehyde was obtained with the $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP} 2 / 6-31 \mathrm{G}^{* *}$ method, it can be predicted that the reaction has three competitive dominant reaction channels. The first dominant reaction channel consists of four steps: (1) two reactants form an intermediate (INT2), which is a barrier-free exothermic reaction of $91.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. (2) Intermediate (INT2) is isomerized to a four-membered ring silylene (P 2) via a transition state (TS2) with an energy barrier of $13.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. (3) Four-membered ring silylene (P2) further reacts with acetaldehyde to form an intermediate (INT3), which is also a barrier-free exothermic reaction of $41.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; (4) Intermediate (INT3) is isomerized to a spiro-heterocyclic ring compound with $\mathrm{Si}(\mathrm{P} 3)$ via a transition state (TS3) with an energy barrier of $121.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The second dominant reaction channel consists of two steps: (1) the two reactants form a four-membered ring silylene (INT4), it is a barrier-free exothermic reaction of $180.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. (2) INT4 is isomerized to a distorted fourmembered ring product (P 4) via a transition state (TS4) with an energy barrier of $6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The third dominant reaction channels are as follows: on the basis of INT4 formed from reaction (4), INT4 further reacts with acetaldehyde to form an intermediate (INT5), which is also a barrier-free exothermic reaction of $30.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$; and then intermediate (INT5) is isomerized to a spiro-heterocyclic ring compound with Si (P5) via a transition state (TS5) with an energy barrier of $55.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

References

1. Leclercq H, Dubois I (1979) J Mol Spectrosc 76:39-53
2. Srinivas R, Sulzle D, Schwarz H (1991) J Am Chem Soc 113:5254
3. Warren WH, Kevin WW, Dennis JC (1997) J Chem Phys 107:8829-8839
4. Lu XH, Yu HB, Wu WR (2005) New J Chem 29:332-335
5. Lu XH, Yu HB, Xu YH, Xiang PP, Liu YD (2006) J Mol Struct (THEOCHEM) 770:185-191
6. Lu XH, Yu HB, Xu YH, Xiang PP, Che X (2007) Mol Phys 105:1961-1969
7. Lu XH, Che X, Yu HB, Xiang PP, Xu YH (2007) J Mol Struct (THEOCHEM) 821:53-57
8. Lu XH, Yu HB, Che X, Xiang PP (2008) Int J Quantum Chem 108:1114-1122
9. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503-506
10. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K,

Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PM, Johnson BG, Chen W, Wong MW, Andres JL, HeadGordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.9. Gaussian Inc, Pittsburgh
11. Fukui K (1970) J Phys Chem 74:4161-4163
12. Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153-2156
13. Lu XH, Han JF, Li YQ, Wang ZN (2011) Chin J Chem 29:1969-1974

[^0]: X. Lu (囚) \cdot L. Shi

 School of Chemistry and Chemical Engineering, University of Jinan,
 Jinan, Shandong 250022, People's Republic of China
 e-mail: 1xh@ujn.edu.cn
 H. Ji

 Department of Medicine, Shandong Medical College, erhuannanlu 5460 ,
 Jinan, Shandong 250002, People's Republic of China

